

PII: S0960-894X(96)00340-X

SYNTHESIS OF C-OXETANOSYL-THIAZOLE AND ITS CARBOCYCLIC ANALOG NUCLEOSIDES AS POTENTIAL CHEMOTHERAPEUTIC AGENTS

Yoshiko Kikuchi, Shigeru Nishiyama, and Shosuke Yamamura

Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223, Japan

Kuniki Kato*

Research Laboratories, Pharmaceuticals Group, Nippon Kayaku Co. Ltd., Shimo, Kita-ku, Tokyo 115, Japan

Sari Fujiwara and Kazuo Umezawa

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Yokohama 223, Japan

Yukimasa Terada

Faculty of Pharmacy, Meijo University, Tempaku-ku, Nagoya 468, Japan

Abstract: Novel C-nucleosides (2'S, 3'S)-2-[2', 3'-(bishydroxymethyl)-oxetan-1'-yl]-1,3-thiazole-4-carboxamide 3 and its carbocyclic analog 4 have been synthesized. Compound 4 enhanced NGF-induced differentiation on PC12 cells at 100 μg/ml, and moreover, 4 alone also induced morphological differentiation significantly at 10 and 100 μg/ml. Copyright © 1996 Elsevier Science Ltd

Inhibitors of inosine monophosphate dehydrogenase (IMPD, IMP:NAD+ oxidoreductase, EC 1.1.1.205), a rate-limiting enzyme in guanine nucleotide biosynthesis, have been shown to possess the ability to induce differentiation in neoplastic cells,¹ to inhibit the G protein-mediated cellular signaling mechanism,² and to downregulate oncogene activity.³ Amongst the synthetic C-nucleosides, tiazofurin (NSC-286193, TiazoleTM) 1, 2-(β-D-ribofuranosyl)-1,3-thiazole-4-carboxamide⁴ and selenazofurin 2 (NSC-340847)⁵ are potent inhibitors of this enzyme.⁶ In sensitive cells, both compounds are anabolized to thiazole-4-carboxamide adenine dinucleotide (TAD) and selenazole-4-carboxamide adenine dinucleotide (SAD), respectively, analogs of the coenzyme nicotinamide adenine dinucleotide (NAD), and these dinucleotides act as an inhibitor of the target enzyme IMPD.⁷ Tiazofurin 1 has demonstrated potent antitumor activity against several tumor cell lines *in vivo* and the clinical trials of 1, alone or in combination with other agents such as paclitaxel and ribavirin, are underway in patients with myelogenous leukemia, ovarian cancer, and breast cancer.⁸ In continuation of our studies on the preparation and antiviral and antitumor evaluations of analogs of the unusual antiviral antibiotic nucleoside oxetanocin-A, we set ourselves the targets of preparing (2'S, 3'S)-2-[2', 3'-(bishydroxymethyl)-oxetan-1'-yl]-1,3-thiazole-4-carboxamide 3 and its carbocyclic analog 4 aiming at IMPD. In this report we would like to describe the synthesis and the biological activities of 3 and 4.

CONH₂

$$X = S$$
 $X = S$
 $Y = S$
 Y

Computational studies: Recently, Goldstein and co-worker suggested that the presence of an attractive interaction between the thiazole sulfur and furanose oxygen O₁' would have important implications for drug

1898 Y. KIKUCHI et al.

binding and activity, i. e. the observed $S\cdots O_1$ ' distance from the crystallographic and computational studies of tiazofurin is 2.96 Å and is less than the sum of the sulfur and oxygen van der Waals radii (3.3 Å).⁹ In the case of 3, the corresponding $S\cdots O_1$ ' distance was calculated to be 4.11 Å on the basis of the most stable conformer and the weighted mean distance was also estimated to be 3.78 Å based on relative population of each conformer because of a low energy barrier (ca. 1.8 kcal/mol).¹⁰

Chemistry: As shown in Scheme 1, the synthesis of the optically active oxetanosyl-thiazole 3 began with the chiral oxetane-ester 6 prepared from diacetone D-glucose 5 in 15 steps. 11,12 Treatment of 6 thus obtained with NH₃ in MeOH gave the amide 7 in 89 % yield. Initial attempts to convert amide group of 7 into thioamide group with P_2S_5 and Lawesson's reagent [2,4-bis(4-methoxyphenyl)-1,3-dithia-2,4-diphosphetane-2,4-disulfide] under various conditions were unsuccessful just affording the complex compounds. Alternatively, hydrogenolysis of 7 over 10 % Pd on carbon to the diol 8 followed by benzoylation provided the dibenzoate 9 in 81 % yield in two steps. Compound 9 was readily reacted with Lawesson's reagent to afford the thioamide 10 in 48 % yield. Then, reaction of 10 with ethyl bromopyruvate in EtOH gave smoothly the thiazole 11 in 68 % yield. Finally, amination of compound 11 in saturated methanolic ammonia afforded the target compound 3 in 94 % yield.

Scheme 1 Reagents and Conditions: 1) 15 steps. See ref.11 and 12; 2) NH₃, MeOH, rt, 15 h; 3) H₂, 10 % Pd on Carbon, MeOH, rt, 15 h; 4) PhCOCl, pyridine, rt, 15 h; 5) Lawesson's reagent (1.0 eq), pyridine (0.1 eq), dioxane, 65 °C, 2 h; 6) BrCH₂COCOOEt, EtOH, reflux, 2 h; 7) NH₃, MeOH, sealed tube, rt, 15 h.

Synthesis of the optically active carbocyclic-thiazole 4 started from the known chiral cyclobutyl alcohol 12¹³ as shown in Scheme 2. Reaction of 12 with trifluoromethanesulphonic anhydride and pyridine at -40 °C yielded the triflate 13, which was used to the next reaction without purification because of its instability. Replacement reaction of compound 13 with LiCN in DMF-HMPA at -40 °C gave the desirable nitrile 14 in 55 % yield in two

steps. ¹⁴ Hydrolysis of the cyano group of **14** into the amide **15** was successfully accomplished by the treatment with 98 % formic acid saturated with HCl gas in 97 % yield. Compound **15** was reacted with Lawesson's reagent to afford the thioamide **16** in 77 % yield, which reacted with ethyl bromopyruvate in EtOH to give the carbocyclic-thiazole **17** in 85 % yield. After amination of compound **17** in saturated methanolic ammonia, the target compound **4** could be obtained in 96 % yield. ¹⁶

Scheme 2 Reagents and Conditions: 1) Tf₂O, pyridine, -40 °C, 2 h; 2) LiCN, DMF, HMPA, -40 °C, 1 h; 3) HCl gas, 98 % HCOOH, rt, 4 h; 4) Lawesson's reagent (1.0 eq), pyridine (0.1 eq), dioxane, 65 °C, 2 h; 5) BrCH₂COCOOEt, EtOH, reflux, 2 h; 6) NH₃, MeOH, sealed tube, rt, 15 h.

Biological activities: Induction of morphological differentiation by compound 4 in PC12 cells

The signal transduction through NGF receptor to induce differentiation in rat pheochromocytoma PC12 cells is known to include c-Ras function, since microinjection of anti-Ras inhibits NGF-induced differentiation in PC12 cells.¹⁷ We examined the effects of compounds 1, 3, and 4 on the differentiation of PC12 cells either in combination with NGF or alone. As shown in Fig. 1, 1 inhibited NGF-induced differentiation at 1-100 µg/ml, as expected. Compound 3 showed no effect even at 100 µg/ml either with NGF or alone. Unexpectedly, compound 4 enhanced NGF-induced differentiation at 100 µg/ml, and moreover, 4 alone also induced morphological differentiation significantly at 10 and 100 µg/ml. Both 3 and 4 did not inhibit IMPD (data not shown), and the mechanism of differentiation induced by 4 remains to study.¹⁸

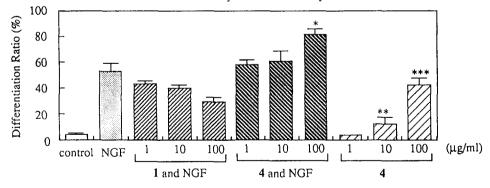


Fig. 1 Induction of morphological differentiation by 4 in PC12h cells. The cells were incubated for 48 hours in the medium containing 0.2 % semifetal bovine serum with chemicals and/or 50 ng/ml of NGF. The cells having neurites longer than 1.5 times of cell diameter were scored positive.

*P < 0.01 against NGF alone, **P < 0.05 against none, ***P < 0.001 against none.

1900 Y. KIKUCHI et al.

In summary, we have developed the synthesis of novel C-nucleosides (2'S, 3'S)-2-[2', 3'-(bishydroxymethyl)-oxetan-1'-yl]-1,3-thiazole-4-carboxamide 3 and its carbocyclic analog 4. Although both compounds did not inhibit inosine monophosphate dehydrogenase, compound 4 enhanced NGF-induced differentiation on PC12 cells, and moreover, 4 alone also induced significant morphological differentiation. Compound 4 should be further pursued for its therapeutic potential as a new differentiation inducer.

Acknowledgment: We wish to thank Dr. Yuh-ichiro Ichikawa, Research Laboratories, Pharmaceuticals Group, Nippon Kayaku Co. Ltd., for generous gifts of the chiral alcohol compound 14.

References and Notes:

- Goldstein, B. M.; Leary, J. F.; Farley, B. A.; Marquez, V. E.; Rowley, P. T. Blood 1991, 78, 593-598.
- Parandoosh, Z.; Rubalcava, B.; Matsumoto, S. S.; Jolley, W. B.; Robins, R. K. Life Sci. 1990, 46, 315-320.
- 3. Kharbanda, S. M.; Sherman, M. L.; Springgs, D. R.; Kufe, D. W. Cancer Res. 1988, 48, 5965-5968.
- 4. Srivastava, P. C.; Pickerling, M. V.; Allen, L. B.; Streeter, D. G.; Campbell, M. T.; Witkowski, J. T.; Sidwell, R. W.; Robins, R. K. J. Med. Chem. 1977, 20, 256-262.
- Srivastava, P. C.: Robins, R. K. J. Med. Chem. 1983, 26, 445-448.
- Jayaram, H. N.; Smith, A. L.; Glazer, R. I.; Johns, D. G.; Cooney, D. A. Biochem. Pharmacol. 1982, 31, 3839-3845. Jayaram, H. N.; Ahluwaria, G. S.; Dion, R. L.; Gebeyehu, G.; Marquez, V. E.; Kelley, J. A.; Robins, R. K.; Cooney, D. A.; Johns, D. G. Biochem. Pharmacol. 1983, 32, 2633-2636.
- 7. Kuttan, R.; Robins, R. K.; Saunders, P. P. Biochem. Biophys. Res. Commun. 1982, 107, 862-868. Cooney, D. A.; Jayaram, H. N.; Gebeyehu, G.; Betts, C. R.; Kelley, J. A.; Marquez, V. E.; Johns, D. G. Biochem. Pharmacol. 1982, 31, 2133-2136. Li, H.; Hallows, W. H.; Punzi, J. S.; Marquez, V. E.; Carrell, H. L.; Pankiewicz, K. W.; Watanabe, K. A.; Goldstein, B. M. Biochemistry 1994, 33, 23-32.
- Yeh, Y. A.; Olah, E.; Wendel, J. J.; Sledge, G. W. Jr.; Weber, G. Proc. Amer. Assoc. Cancer Res. 1994, 35: Abst. 1978.
- 9. Burling, F. T.; Goldstein, B. M. J. Am. Chem. Soc. 1992, 114, 2313-2320.
- 10. This calculation was carried out using the same program (MOPAC-MNDO) as cited in the reference 9.
- 11. Witty, D. R.; Fleet, G. W. J.; Choi, S.; Vogt, K.; Wilson, F. X.; Wang, Y.; Storer, R.; Myers, P. L.; Wallis, C. J. Tetrahedron Lett. 1990, 47, 6927-6930.
- 12. Izawa, T.; Nakayama, K.; Nishiyama, S.; Yamamura, S.; Kato, K.; Takita, T. J. Chem. Soc., Perkin Trans. 1. 1992, 3003-3004.
- 13. Ichikawa, Y.; Narita, A.; Shiozawa, A.; Hayashi, Y.; Narasaka, K. J. Chem. Soc., Chem. Commun. 1989, 1919-1921. Ahmad, S. Tetrahedron Lett. 1991, 32, 6997-7000.
- 14. Several attempts of the substitution reaction of the stable mesylate of the alcohol 14 with cyanide ion under various conditions were unsuccessful.
- 15. Selected spectroscopic data for **3**: colorless foam, $[\alpha]^{21}_D$ +45° (c 0.64, H₂O); λmax (H₂O) 238 nm (ε 10,100); 1 H NMR (400 MHz, D₂O) δ 3.07 (1H, m), 3.65 (2H, d, J=3.9Hz), 3.73 (1H, dd J=6.4 and 12.0Hz), 3.77 (1H, dd, J=6.4 and 12.0Hz), 4.69 (1H, ddd, J=6.4, 6.4 and 6.6Hz), 5.64 (1H, d, J=6.4Hz) and 8.11 (1H, s); 13 C NMR (100.5 MHz, D₂O) δ 45.9, 61.1, 64.3, 79.1, 83.2, 127.5, 149.0, 166.3 and 173.8; HRMS m/z 245.0594 calcd for C₉H₁₃N₂O₄S (M⁺+1), found 245.0583.
- 16. Selected spectroscopic data for 4: colorless foam, $[\alpha]^{21}_D$ -43° (c 0.78, EtOH); λ max (EtOH) 237 nm (ϵ 7,900); 1 H NMR (400 MHz, CD₃OD) δ 2.08 (1H, q, J=9.0Hz), 2.33 (1H, m), 2.45 (1H, q, J=9.0Hz), 2.55 (1H, m), 3.52-3.61 (3H, complex), 3.63 (1H, dd, J=6.0 and 14.0Hz), 3.67 (1H, dd, J=6.0 and 14.0Hz) and 8.08 (1H, s); 13 C NMR (100.5 MHz, CD₃OD) δ 29.7, 37.7, 38.1, 49.8, 64.4, 65.7, 124.8, 150.5, 165.8 and 176.1; HRMS m/z 242.0724 calcd for C₁₀H₁₄N₂O₃S, found 242.0715.
- 17. Hagag, N.; Halegoura, S.; Viola, M. Nature 1986, 319, 680.
- 18. Evaluation of compounds 3 and 4 against HSV-1 and HSV-2 in Vero cells by a plaque reduction assay at concentrations up to 100 μg/ml revealed these compounds to be devoid of antiviral activity and cytotoxicity.